首页> 外文OA文献 >An algebraic framework to represent finite state machines in single-layer recurrent neural networks
【2h】

An algebraic framework to represent finite state machines in single-layer recurrent neural networks

机译:表示单层递归神经网络中的有限状态机的代数框架

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this paper we present an algebraic framework to represent finite state machines (FSMs) in single-layer recurrent neural networks (SLRNNs), which unifies and generalizes some of the previous proposals. This framework is based on the formulation of both the state transition function and the output function of an FSM as a linear system of equations, and it permits an analytical explanation of the representational capabilities of first-order and higher-order SLRNNs. The framework can be used to insert symbolic knowledge in RNNs prior to learning from examples and to keep this knowledge while training the network. This approach is valid for a wide range of activation functions, whenever some stability conditions are met. The framework has already been used in practice in a hybrid method for grammatical inference reported elsewhere (Sanfeliu and Alquézar 1994).
机译:在本文中,我们提出了一个表示单层递归神经网络(SLRNN)中的有限状态机(FSM)的代数框架,该框架统一并概括了先前的一些建议。该框架基于状态转移函数和FSM的输出函数(作为线性方程组)的表述,并允许对一阶和高阶SLRNN的表示能力进行分析性解释。该框架可用于在从示例中学习之前在RNN中插入符号知识,并在训练网络时保留该知识。只要满足某些稳定性条件,此方法就适用于多种激活功能。该框架已在实践中以混合方法用于其他地方报道的语法推断(Sanfeliu和Alquézar1994)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号